Pivotal estimation via square-root Lasso in nonparametric regression
نویسندگان
چکیده
We propose a self-tuning √ Lasso method that simultaneously resolves three important practical problems in high-dimensional regression analysis, namely it handles the unknown scale, heteroscedasticity and (drastic) non-Gaussianity of the noise. In addition, our analysis allows for badly behaved designs, for example, perfectly collinear regressors, and generates sharp bounds even in extreme cases, such as the infinite variance case and the noiseless case, in contrast to Lasso. We establish various nonasymptotic bounds for √ Lasso including prediction norm rate and sparsity. Our analysis is based on new impact factors that are tailored for bounding prediction norm. In order to cover heteroscedastic non-Gaussian noise, we rely on moderate deviation theory for self-normalized sums to achieve Gaussian-like results under weak conditions. Moreover, we derive bounds on the performance of ordinary least square (ols) applied to the model selected by √ Lasso accounting for possible misspecification of the selected model. Under mild conditions, the rate of convergence of ols post √ Lasso is as good as √ Lasso’s rate. As an application, we consider the use of √ Lasso and ols post √ Lasso as estimators of nuisance parameters in a generic semiparametric problem (nonlinear moment condition or Z-problem), resulting in a construction of √ n-consistent and asymptotically normal estimators of the main parameters.
منابع مشابه
Square-root lasso: pivotal recovery of sparse signals via conic programming
We propose a pivotal method for estimating high-dimensional sparse linear regression models, where the overall number of regressors p is large, possibly much larger than n, but only s regressors are significant. The method is a modification of the lasso, called the square-root lasso. The method is pivotal in that it neither relies on the knowledge of the standard deviation σ or nor does it need...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملVariable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملNonparametric Greedy Algorithms for the Sparse Learning Problem
This paper studies the forward greedy strategy in sparse nonparametric regression. For additive models, we propose an algorithm called additive forward regression; for general multivariate models, we propose an algorithm called generalized forward regression. Both algorithms simultaneously conduct estimation and variable selection in nonparametric settings for the high dimensional sparse learni...
متن کاملAccuracy Assessment for High - Dimensional Linear Regression
This paper considers point and interval estimation of the lq loss of an estimator in high-dimensional linear regression with random design. We establish the minimax rate for estimating the lq loss and the minimax expected length of confidence intervals for the lq loss of rate-optimal estimators of the regression vector, including commonly used estimators such as Lasso, scaled Lasso, square-root...
متن کامل